A Semi-invariant Orbit of Complex Moduli Space Rational Self-dual Map

Matt Bernard[‡]

mb@ibmatt.org

‡ No Affiliation

Abstract Let M := 4-dimensional compact topology, for $\mathcal{B} \in M$ by $\mathcal{B} \stackrel{\text{def}}{=} \{(p, q, \ell) \mid p, q \in \ell\} \subset \mathbf{P}_2 \times \mathbf{P}_2 \times \mathbf{P}_2^{\times} \text{ with projection } \mathcal{B} \stackrel{\sigma}{\longrightarrow} \mathbf{P} \times \mathbf{P}$ bijective outside the diagonal $\Delta := \{(p, p)\} \subset \mathbf{P}_2 \times \mathbf{P}_2$ such that every fiber $\sigma^{-1}(p, p) = \{(p, p, \ell) \mid \ell \ni p\}$, for $(p, p) \in \Delta$, is naturally identified by a line pencil through $p \in \mathbf{P}_2$ and an exceptional divisor, a 3-dimensional submanifold $E := \sigma^{-1}(\Delta) \subset \mathcal{B}$. First, we show: All non-trivial ${\cal B}$ projections ${f P}_2 imes {f P}_2 imes {f P}_2^{ imes}$ given by degree-3 rational maps with cofactors (π_1, π_2, π_3) are invariant of a generic eigen-line λ in each plane; we then prove: Homology classes of 3-dimensional \mathcal{B} cocycles, in terms of the full preimages $\{A_1 = \pi_1^{-1}(\lambda), A_2 = \pi_2^{-1}(\lambda), M = \pi_3^{-1}(\lambda)\}$ are invariant of the choice of λ . Secondly, we prove: For any ϱ such that all (finite) orbits $\{\lambda(\Gamma_{\varrho,\varphi}(\sigma))\}$ of semi-irreducible actions $\Gamma_{\varrho}(\Gamma_{\varphi}(\sigma))$ are given by automorphisms of (non)normal extension from 3 co-prime homogeneous polynomials, Γ of hyperplane pencils, and a topological triple $\{\alpha_1 = \#(\Gamma \cap A_1), \alpha_2 = \#(\Gamma \cap A_2), \mu = \#(\Gamma \cap M)\}$ which sends a Veronese curve to itself, the roots of semi-irreducible $D_{\varphi}(\mathbb{Q}[\cdots])$ polynomial actions are generated by coefficients of rational map φ with dual in $\mathbb{C}\mathbf{P}^k$. As corollary, we prove \mathbb{R} -valued $X \in \sup_{\sigma} \Gamma(\sigma)$ implies semi-irreducible $D_{\varphi}(\mathbb{Q}[\cdots])$ orbital closure $[(\lambda^X)]$ of characteristic $\mathcal{N}(0,1)$ moments $m_{\alpha}=\langle X^{\alpha} \rangle$, typically for
$$\begin{split} \varphi(t) &= \left\langle e^{i(t,\,X(t))} \right\rangle = \int_{\mathbb{R}^n} e^{i(t,\,X(t))} d\mu \left(X(t) \right) \text{ analytic in } 0\text{-neighborhood} \\ \text{of the series } \log \varphi(t) &= \sum_{|\alpha|>0} \frac{s_\alpha}{\alpha!} (it)^\alpha, \text{ where } \varphi(t) = 1 + \sum_{|\alpha|>0} \frac{m_\alpha}{\alpha!} (it)^\alpha, \end{split}$$
 $|\alpha| = \alpha_1 + \cdots + \alpha_n, \ \alpha! = \alpha_1! \times \cdots \times \alpha_n!, \ \alpha_i \in \mathbb{N}.$

Keywords: Rational self-dual map, moduli orbit space, moment closure

‡ Grateful for the support of THE LYNN BIT FOUNDATION

2	Bernard, M.
INTRODUCTION	