Polygon-gluing Enumeration with Polynomial Bialgebra Partition

Matt Bernard[‡]

mb@ibmatt.org

‡ No Affiliation

Abstract We first prove arbitrary polygon-gluing line-breaking, spectral completion with respect to the standard irreducible representation $\mathbf{St}_n = \mathbb{C}^n/\mathbb{C}$ of $G = \mathbf{S}_n$ of dimension n-1 with conjugacy invariance $\left\langle f_1,\,f_2\right\rangle = |G|^{-1}\sum_{g\in G}f_1(g)f_2(g) \ \ \text{and ergodic decompositon} \ \bigoplus_{\pi\in\mathcal{R}}m(\pi)\,\pi$ of $V=\pi_0\oplus\cdots\oplus\pi_{n-1}$ for $f:\mathsf{S}_n\mapsto\mathbb{C}$, where \mathcal{R} is set of representatives of the isomorphism classes of irreducible G representations alongside non-negative integer multiplicities $m(\pi)$. We then prove the unique trace decomposition $\chi_V(g) \operatorname{tr}(g, V)$ for all given representations $\pi_r = (\operatorname{\mathbf{St}}_n)$, $0 \le r \le n-1$, for every S_n , $\chi_V : S_n \to \mathbb{C}$; and we show the nontrivial application of the result in orbifold Euler-characteristic partition evaluation within modern context of a theory of genus-g moduli space $\mathcal M$ curves. In particular, we obtain the enumeration of $\pi: \mathcal{M} \to \mathcal{M} \otimes \mathcal{M}$ sequences of polynomials containing Catalan sequence, in terms of the (exponential) generating function $Q_{\tau}(k) = \frac{1}{(2m-1)!!} \sum_{0 \leq g \leq m/2} \epsilon_g(m) \, k^{m+1-2g}$ for all π -free involution $au \in S_{2m}$ or interchangeably $\operatorname{mod-}\pi$ distribution whose product over standard cyclic permutation σ has m+1-2g cycles, such that $\varepsilon_g(m)$ is the number of ways to identify sides of a (2m)-gon in pairs with reverse orientation and, $(2m-1)!! = 1 \cdot 3 \cdot \cdots \cdot (2m-1)$, which is the number of ways to glue an oriented surface from the regular (2m)-gon, is precisely the cardinality of the conjugacy class of τ .

Keywords: Polynomial bialgebra, moduli space enumeration

‡ Grateful for the support of THE LYNN BIT FOUNDATION

2	Bernard, M.
INTRODUCTION	
INTRODUCTION	